ใช้ Social Listening วิเคราะห์ Krystal Club ด้วย Data จากการทำ Social Sentiments

ใช้ Social Listening วิเคราะห์ Krystal Club ด้วย Data จากการทำ Social Sentiments

จากกระแส Krystal Club เลาจน์หรูย่านทองหล่อที่โด่งดังที่ทำให้เกิดการแพร่ระบาดระลอกใหม่จนถูกนิยามให้เป็นระลอกหนัก แน่นอนว่าเกิดกระแสการพูดถึงมากมายบนโลกออนไลน์ แต่ในความเป็นจริงแล้วจะมีสักกี่คนที่รู้ว่าบนออนไลน์หรือโซเชียลมีเดียนั้นมีการพูดถึง Krystal Club ในแง่มุมไหนบ้าง และแง่มุมใดบ้างที่ถูกพูดถึงมากกว่ากัน ใช่น้องฟ้าใสคนดังหรือไม่? แต่แอบบใบ้เบาๆ ว่ากลายเป็นคุณชูวิทย์ที่มีการถูกพูดถึงมากเป็นอันดับที่สอง แล้วแง่มุมใดของ Krystal Club ที่มีการโพสถึงมากที่สุดบนโซเชียลมีเดียกันหละ? มาครับ วันนี้ผมจะพาคุณไปดูว่า Krystal Club ถูกพูดถึงในแง่มุมไหนมากที่สุดผ่านการทำ Social Sentiments Analysis ด้วยการใช้ Social Listening tool เพื่อให้เราได้เห็นภาพรวมของ​ Conversation ที่เกิดขึ้นบนออนไลน์ โดยไม่ได้ดูแค่เทรนด์หรือจำนวน Mentions เท่านั้น แต่เราจะลงไปดูในรายละเอียดทั้งหมดจนออกมาเป็น Social Consumer Research ภาพรวมในเรื่องนี้กันครับ

1. Keyword Research เริ่มต้นจากคำถามว่าคนส่วนใหญ่พูดถึงเรื่องนี้ว่าอย่างไร?

วิเคราะห์เจาะลึก Krystal Club ผับดังที่ทองหล่อ ด้วยการทำ Social Sentiments Analysis จาก Social listening tool ของ Mandala Analytics

หลายครั้งผมมักเห็นคนใช้ Social listening tool ด้วยการใส่คำที่อยากรู้เข้าไปตรงๆ แต่จากประสบการณ์ที่ใช้เครื่องมือชนิดนี้ในการทำรีเสิร์จมานานบอกให้รู้ว่า เราควรต้องเริ่มจากการทำรีเสิร์จคีย์เวิร์ดหรือคำก่อนครับ

ดังนั้นผมจึงเลือกใช้ Google Trends ในการพูดว่าคนในประเทศนั้นมีการค้นหาสิ่งนี้ว่าอย่างไร เพราะใน Google Trends จะบอกคำที่คนพิมพ์จริงๆ ให้เราเห็น ซึ่งก็จะมีการพิมพ์ผิดบ้าง หรือพิมพ์ในภาษาไทยบ้าง ซึ่งถือเป็นการขยายกรอบ Data ออกไปให้กว้างขึ้นเพื่อที่จะครอบคลุมพอให้เรากวาดได้ทุกโพสที่เกิดขึ้นบนโซเชียลมีเดีย เรียกได้ว่าเก็บมาให้หมดทุกบทสนทนาเพื่อจะได้สกัดกลั่นออกมาเป็น Social Consumer Insight ที่แม่นยำ

วิเคราะห์เจาะลึก Krystal Club ผับดังที่ทองหล่อ ด้วยการทำ Social Sentiments Analysis จาก Social listening tool ของ Mandala Analytics

ซึ่ง Case Study การใช้​​ Social listening tool ในครั้งนี้ผมก็ตั้งต้นจากคำว่า Krystal เป็นคีย์เวิร์ดแรกก่อน ซึ่งจากกราฟการค้นหาของคนไทยในประเด็นนี้ก็พบว่าเพิ่งเกิดขึ้นพีคๆ เอาก็วันที่ 6 เมษายนซึ่งก็ถือว่าไม่ได้นานแต่อย่างไร แล้วเมื่อดูในคำค้นหาที่เกี่ยวข้องกับ Krystal Club ก็พบว่ามีทั้งการค้นหาด้วยคำว่า น้องฟ้า และคำว่า คริสตัล ในภาษาไทยควบคู่ครับ

ดังนั้นในตอนนี้ผมจึงได้ข้อสรุปเรื่อง Keyword เบื้องต้นแล้วว่าคนไทยพิมพ์ 3 ถึงประเด็นนี้ 3 แบบ

  1. Krystal
  2. คริสตัล
  3. ฟ้าใส

เมื่อได้ข้อสรุปเบื้องต้นก็นำสมมติฐานดังกล่าวไปตั้งต้นดึง Data จาก Social listening tool กันเลยครับ

2. ใส่ Keywords ที่ใช่เพื่อเริ่ม Collecting Data

เมื่อเราได้คีย์เวิร์ดที่ใช่ระดับหนึ่งมาแล้วจากการทำรีเสิร์จ เราก็จะเอาคำดังกล่าวใส่เข้ามาใน Social listening tool เพื่อให้ระบบเรียก Data ที่เราต้องการออกมาให้ง่ายต่อการใช้งาน

ในเคสนี้ผมใช้ Mandala Analytics เครื่องมือ Social listening tool ของคนไทยที่ใช้งานง่ายเพราะถูกออกแบบมาอย่างเข้าใจนักการตลาดอย่างเราครับ

วิเคราะห์เจาะลึก Krystal Club ผับดังที่ทองหล่อ ด้วยการทำ Social Sentiments Analysis จาก Social listening tool ของ Mandala Analytics

ในตอนแรกผมใส่คีย์เวิร์ดไปทั้งหมด 4 คำและดึงข้อมูลย้อนหลังไปถึงแค่ต้นปี วันที่ 1 มกราคม 2564 แต่ก็พบว่ามีข้อมูลเข้ามาเยอะพอสมควร (จริงๆ ต้องนับว่าเยอะมาก) มากถึงกว่า 45,179 Mentions แต่เมื่อผมเข้าไปดูรายละเอียดของ Data ก็พบว่ามีข้อมูลที่ใช้คำดังกล่าวแต่ไม่ได้เกี่ยวกับ Krystal Club ที่อยากรู้เยอะมาก

วิเคราะห์เจาะลึก Krystal Club ผับดังที่ทองหล่อ ด้วยการทำ Social Sentiments Analysis จาก Social listening tool ของ Mandala Analytics
Source: https://www.instagram.com/p/CNhyMXOp1Zl/

ตั้งแต่โพสขายนาฬิกาข้อมือที่มีวิธีการตัดสาย Crystal

วิเคราะห์เจาะลึก Krystal Club ผับดังที่ทองหล่อ ด้วยการทำ Social Sentiments Analysis จาก Social listening tool ของ Mandala Analytics
Source: https://www.youtube.com/channel/UCSTK0MiKNgEiSecelafoOJg

เกม Free Fire ที่พูดถึงการเติมคริสตัลในเกม

วิเคราะห์เจาะลึก Krystal Club ผับดังที่ทองหล่อ ด้วยการทำ Social Sentiments Analysis จาก Social listening tool ของ Mandala Analytics
Source: https://twitter.com/krystalljungxz/status/1380369231280099332

หรือ Krystal ที่เป็นศิลปินเกาหลีที่โด่งดังมากๆ จนเรียกได้ว่ากระแส Krystal Club ยังไม่มีการพูดถึงเท่าเธอคนนี้เลย

จริงๆ แล้วยังมี Data ที่มีคำว่า คริสตัล, Krystal, Crystal และ ฟ้าใส อีกมากที่ไม่ได้เกี่ยวข้องกับประเด็นเรื่อง Krystal Club สักเท่าไหร่ ดังนั้นในการจะวิเคราะห์ Data เพื่อหา Insight ต้องเริ่มจากการ Clean data ที่ไม่เกี่ยวข้องออกไปให้ได้มากที่สุด หรือเอาเข้าจริงก็คือต้องคลีนที่ไม่เกี่ยวทั้งหมดออกไปให้ได้ครับ

3. Cleansing Data คัดข้อมูลที่ไม่เกี่ยวออกไป เพื่อให้ได้ Quality Data ที่ Quantity มากพอ

การจะเคลียร์ข้อมูลที่ไม่เกี่ยวข้องออกไปให้หมดนอกจากจะต้องใช้ประสบการณ์แล้วยังต้องใช้ความพยายามอย่างสูงด้วยครับ เพราะคุณต้องไล่อ่านทุก Mention ที่ Social listening tool กวาดมาให้ เพราะในการทำ Marketing Research ในโลกยุคดาต้า 5.0 คุณต้องมีทั้ง Quality และ Quantity ควบคู่กัน เราไม่จำเป็นต้องเลือกอย่างใดอย่างหนึ่งเหมือนโลกยุคเก่าแต่อย่างไร

และหลังจากผมทำขั้นตอนที่ 2 ที่เริ่มกวาด Data มาครั้งแรกก็พบว่าจริงๆ แล้วผมสามารถตั้ง Keyword แค่สองคำก็พอ นั่นก็คือ krystal และ คริสตัล ครับ ส่วนคำว่าฟ้าใสนั้นกว้างไปมาก มักจะถูกใช้ในบริบทของการท่องเที่ยวเป็นส่วนใหญ่ เช่น ไปเที่ยวทะเลดูท้องฟ้าใส เป็นต้น

วิเคราะห์เจาะลึก Krystal Club ผับดังที่ทองหล่อ ด้วยการทำ Social Sentiments Analysis จาก Social listening tool ของ Mandala Analytics

และนี่ก็เป็นตัวอย่าง Channel ที่ผมต้องคลีนออกไปบางส่วน บวกกับบางคำที่ต้องคลีนออกไปเพื่อให้ได้ Quality Data ที่มีปริมาณมากพอที่จะนำมาวิเคราะห์หา Social Consumer Insight ได้ครับ

จะเห็นว่ามีคำที่เกี่ยวกับฟุตบอลอยู่ นั่นก็คือสโมสร คริสตัล พาเลซ หรือแม้แต่แบรนด์ Chame เองก็มีสินค้าที่เป็นคอลลาเจน คริสตัล รวมไปถึงห้าง คริสตัล ราชพฤกษ์ ที่อยู่แถวบ้านผม เรียกได้ว่ามีการ Cleansing Data กันสนุกสนานหมดเป็นวันเลยทีเดียวครับ

วิเคราะห์เจาะลึก Krystal Club ผับดังที่ทองหล่อ ด้วยการทำ Social Sentiments Analysis จาก Social listening tool ของ Mandala Analytics

ทำให้จากหลายหมื่นจนถึงแสนเมื่อคลีนข้อมูลที่ไม่ใช่รอบแรกออกไปแล้วก็เหลือแค่ 10,121 Mentions

ซึ่งทีนี้สิ่งที่ผมจะทำต่อก็คือการ Clean data เลเวล 2 ด้วยการ Selective Data เลือกคัดเฉพาะข้อมูลที่ใช่เพื่อให้เราสามารถนำไปทำ Social Sentiment Analysis ได้อย่างมีประสิทธิภาพในขั้นต่อไปครับ

4. Selective Data ด้วยการคัดเฉพาะส่วนที่ใช่

ซึ่งถ้าดูจากกราฟปริมาณการถูกพูดถึงในสองคำนี้ในแต่ละวันก็จะเห็นว่า ในช่วงเดือน Aug ปีก่อนนั้นมีโพสที่มีคำว่า Krystal หรือ คริสตัล เยอะมากอย่างไม่น่าเชื่อครับ

ทั้งที่เรื่องนี้เพิ่งเกิดขึ้นจริงก็ตอนปลายเดือนก่อน พีคหนักๆ ก็วันที่ 6 เมษายน 2564 ตามข้อมูลจาก Google Trends ผมก็เลยต้องเข้าไปเจาะดูว่าในช่วงเวลาดังกล่าวเกิดอะไรขึ้นทำไมถึงมีการโพสถึงบนโลกออนไลน์เยอะจัง

วิเคราะห์เจาะลึก Krystal Club ผับดังที่ทองหล่อ ด้วยการทำ Social Sentiments Analysis จาก Social listening tool ของ Mandala Analytics

เมื่อเข้าไปดูไปทำความเข้าใจก็พบว่า ยังคงเป็นโพสที่เกี่ยวข้องกับศิลปินเกาหลี Krystal คนเดิมอยู่ ดังนั้นสิ่งที่ผมจะทำต่อคือเข้าไป Filter เลือกเฉพาะ​ Data ที่ต้องการจาก Data ที่มีมาทั้งหมดเพื่อทำให้ได้เฉพาะส่วนที่เกี่ยวข้องกับบริบทเรื่อง Krystal Club ที่เป็นข่าวดังจริงๆ

จากการไล่ดู Data ทั้งหมดผมค้นพบว่า โพสที่เกี่ยวข้องกับ Krystal Club จะประกอบด้วย 5 Keywords นี้ไม่คำใดก็คำหนึ่งง

  1. ผับ
  2. เลาจน์
  3. ทองหล่อ
  4. โควิด
  5. ฟ้าใส
วิเคราะห์เจาะลึก Krystal Club ผับดังที่ทองหล่อ ด้วยการทำ Social Sentiments Analysis จาก Social listening tool ของ Mandala Analytics

ดังนั้นผมจึงเข้าไปใน Mentions Console ของ Mandala แล้วใส่ทั้ง 5 คำดังกล่าวเข้าไปเพื่อให้ระบบเลือกแสดงผลเฉพาะโพสที่มี 1 ใน 5 คำประกอบในโพสนั้นด้วย

ซึ่งผลที่ได้คือผมได้ Quality Data ที่ต้องการใน Quantity ที่มากพอ แต่งานยังไม่จบนะครับ เพราะสิ่งที่เราต้องงทำต่อก็คือกลับมาไล่อ่านรายละเอียดดูความถูกต้องของ Data อีกครั้งว่าทุกข้อมูลที่มีในตอนนี้นั้นตรงกับประเด็นที่เราจะทำการวิเคราะห์ต่อหรือไม่

แน่นอนว่าไม่ถูกต้อง 100% ตั้งแต่ตอนแรกหรอกครับ มันก็จะมีบางโพสที่ไม่เกี่ยวหลุดเข้ามาบ้าง แต่ก็จะน้อยกว่าในการทำช่วงแรกมากเพราะตอนนี้ Data ค่อนข้างครบถ้วนถูกต้องตามที่เราต้องการแล้ว

วิเคราะห์เจาะลึก Krystal Club ผับดังที่ทองหล่อ ด้วยการทำ Social Sentiments Analysis จาก Social listening tool ของ Mandala Analytics

ซึ่งถ้าดูจากตัวเลขก็จะเห็นว่าจากหลักหมื่นที่มีลดลงจนเหลือหลักพัน บอกตรงๆ ว่าเคสแบบนี้ไม่ค่อยเกิดขึ้นจากประสบการณ์ที่ทำ Social Consumer Research จาก Data นะครับ เรียกได้ว่ามี Data ที่ไม่เกี่ยวให้ลบออกไปเยอะมากมหาศาลจริงๆ

ทีนี้เมื่อเราคัดได้เฉพาะ Data ที่ต้องการแล้ว ในลำดับถัดไปคือขั้นตอนสำคัญนั่นก็คือการสร้าง Social Sentiments ด้วยตัวเอง เพราะนี่คือสิ่งที่เครื่องมือ​ Social listening tool ตัวไหนก็ให้ไม่ได้

5. Create Social Sentiments เพราะแต่ละโปรเจคมีบริบทของ Data ที่แตกต่างกัน

เดิมที Social Report มันจะออกมาในรูปแบบเทรนด์ซึ่งในความเป็นจริงแล้วข้อมูลดังกล่าวไม่เพียงพอที่นักการตลาดหรือเจ้าาของธุรกิจจะนำไปใช้ต่อยอดได้ เพราะการรู้แค่ปริมาณ Mentions หรือการพูดถึงที่เกิดขึ้นนั้นหาสำคัญไม่ และการดูแค่ Sentiments ที่เป็น Positive หรือ Negative ก็ไม่เพียงพอ เพราะนักการตลาดอย่างเราย่อมอยากรู้ว่า ไอ้ที่ว่ามัน Positive นั้น Positive เรื่องไหน แล้วไอ้ที่มัน Negative นั้นคนไม่ชอบในประเด็นอะไร

ดังนั้นเวลาผมทำ Research ให้ลูกค้าผมจึงต้องอ่านเพื่อประมวลผลวิเคราะห์ว่าในโปรเจคนี้คนพูดถึงในแง่มุมไหนบ้าง เพื่อวิเคราะห์จนเข้าใจ Pattern แล้วว่าในประเด็นไหน และในแต่ละประเด็นนั้นมีคำพูดร่วมในโพสคือคำว่าอะไร ผมก็จะ Data Attribute ครับ

ตัวอย่างในโปรเจคนี้คือผมเริ่มจากติด Tag ในโพสที่เกี่ยวข้องกับ Krystal จริงๆ ก่อนด้วยวิธีการดังรูป กดไปที่ปุ่ม Add Tag จากนั้นก็สร้าง Tag ที่ต้องการขึ้นมา แล้วก็สามารถติด Tag ได้มากกว่า 1 อย่างใน 1 โพสดังรูปครับ

วิเคราะห์เจาะลึก Krystal Club ผับดังที่ทองหล่อ ด้วยการทำ Social Sentiments Analysis จาก Social listening tool ของ Mandala Analytics
วิเคราะห์เจาะลึก Krystal Club ผับดังที่ทองหล่อ ด้วยการทำ Social Sentiments Analysis จาก Social listening tool ของ Mandala Analytics
วิเคราะห์เจาะลึก Krystal Club ผับดังที่ทองหล่อ ด้วยการทำ Social Sentiments Analysis จาก Social listening tool ของ Mandala Analytics
Source: https://www.facebook.com/141108613290/posts/10159661293403291/

เช่น อย่างโพสของเพจ Drama-addict ดังภาพผมก็จะทำการติดไว้ 2 Tags อันแรกคือบอกให้รู้ว่าโพสนี้เกี่ยวข้องกับ Krystal Club ส่วน Tag ที่สองคือเกี่ยวกับ ศาล เพราะมีการพูดถึงเรื่องศาลตัดสินจำคุกผู้จัดการผับ 2 เดือนครับ

เมื่อทำทั้งหมดจนครบทุกโพสเราก็จะเห็นทั้งภาพรวมและสามารถเจาะลงภาพลึกได้เลยว่า ตกลงแล้วเรื่อง Krystal Club ถูกพูดถึงบนโซเชียลด้วยแง่มุมไหนมากที่สุด ใช่เรื่องน้องฟ้าใสหรือไม่ ความสนุกของการทำ Social Data Analytics เพิ่งจะเริ่มต้นขึ้นในขั้นตอนนี้เองครับ

6. Summary Data ดูรายงานภาพรวมก่อนจะไปสู่การวิเคราะห์ลงลึก

ในตอนนี้จาก Data สองหมื่นกว่าคลีนรอบแรกเหลือหมื่นนิดๆ แล้วมีคลีนรอบสุดท้ายเหลือ Data แค่ 1,291 Mentions ซึ่งจากการตรวจสอบแล้วพบว่าทั้งหมดเกี่ยวข้องกับ Krystal Pub ไม่มีดาราเกาหลี ไม่มีโพสขายของ ไม่มีห้างชื่อคล้ายเข้ามาปะปน ซึ่งทั้งหมดใช้เวลาวันกว่าๆ ในการทำ Data Preparation ให้เรียบร้อยพร้อมใช้งานในการวิเคราะห์

วิเคราะห์เจาะลึก Krystal Club ผับดังที่ทองหล่อ ด้วยการทำ Social Sentiments Analysis จาก Social listening tool ของ Mandala Analytics

ซึ่งถ้าดูเปรียบเทียบกับกราฟแรกก่อนคลีนจะเห็นว่าต่างกันเยอะมาก นี่แหละครับการ Craft Data เวลาทำรีเสิร์จของการตลาดวันละตอนที่เราตั้งใจทำให้ลูกค้าด้วยความละเมียดละไมจริงๆ (แอบขายของหน่อย)

เราจะเห็นว่าประเด็นเรื่อง Krystal Pub ทองหล่อนั้นถูกพูดถึงมากที่สุดบนช่องทาง Facebook แต่เราจะเห็นว่าก่อนหน้าที่จะเกิดโควิดระบาดระลอกใหม่ที่เป็นระลอกใหญ่นั้นก็มีกราฟการพูดถึงเลานจ์นี้มากในวันที่ 23-24 ธันวาคม 2563

วิเคราะห์เจาะลึก Krystal Club ผับดังที่ทองหล่อ ด้วยการทำ Social Sentiments Analysis จาก Social listening tool ของ Mandala Analytics
วิเคราะห์เจาะลึก Krystal Club ผับดังที่ทองหล่อ ด้วยการทำ Social Sentiments Analysis จาก Social listening tool ของ Mandala Analytics

ซึ่งพอผมเข้าไปดูรายละเอียดในช่วงสองวันนั้นแล้วพบว่า ส่วนใหญ่เป็นโพสรับสมัครสาว PR สวยรูปร่างหน้าตาดีทั้งนั้น เรียกได้ว่าเลาจน์แห่งนี้ขยันโพสหาคนทำงานเตรียมไว้สำหรับช่วงปีใหม่เลยทีเดียว

หลังจากนั้นในช่วงวันที่ 8 เมษายน 2564 ที่มีการพูดถึงร้าน Krystal Club เยอะๆ ก็คือช่วงที่โควิดระบาดหนักจากร้านนี้ ตามภาพครับ

วิเคราะห์เจาะลึก Krystal Club ผับดังที่ทองหล่อ ด้วยการทำ Social Sentiments Analysis จาก Social listening tool ของ Mandala Analytics

ทีนี้พอเราดูภาพรวมของ Data อีกมุมนึงคือในด้านของ Engagement จะเห็นความต่างที่น่าสนใจ นั่นคือช่องทางที่ได้รับ Engagement มากรองจาก Facebook กลับเป็น Instagram ที่มีการพูดถึงเรื่องนี้น้อยกว่า Twitter อย่างเห็นได้ชัด แถมเพศที่เข้ามา Engagment เยอะๆ กลับเป็นผู้ชาย ทั้งที่ในข้อมูลส่วนของการพูดถึงกลับเป็นผู้หญิงมากกว่า

วิเคราะห์เจาะลึก Krystal Club ผับดังที่ทองหล่อ ด้วยการทำ Social Sentiments Analysis จาก Social listening tool ของ Mandala Analytics

ส่วนเพจที่ติด Top 10 Channels ในแต่ละด้านก็ต่างกัน เพจที่โพสถึง Krystal Club มากที่สุดก็คือเพจของร้าน แล้วก็เพจพวกหางานกลางคืน ส่วนเพจที่ติด Top 10 Channels กลับเป็นเพจของช่องทางหรือ Influencers จริงๆ เรียกได้ว่าเพจที่ขยันโพสไม่ค่อยได้ Engagement แต่พอเป็นประเด็นขึ้นมาได้ Engagment ถล่มทลาย (หรือจะเรียกว่าทัวร์ลงดีนะ)

ทีนี้เรามาดูต่อในส่วนของ Timeing กันบ้างว่าในแง่ของช่วงเวลาหละมีผลต่างกันมั้ย

วิเคราะห์เจาะลึก Krystal Club ผับดังที่ทองหล่อ ด้วยการทำ Social Sentiments Analysis จาก Social listening tool ของ Mandala Analytics

ในด้านบนสุดเราจะเห็นความต่างชัดเจนระหว่างช่วงเวลาที่โพสถึงร้านแห่งนี้ที่กระจายเวลาไปทั้งวัน แต่ช่วงเวลาที่เกิดการ Engagment จริงๆ กลับกระจุกอยู่แค่ตอนบ่ายสองบ่ายสาม กับสามทุ่ม แถมยังกระจุกตัวอยู่ในช่วงวันปลายสัปดาห์

ยิ่งดูในช่วงเวลาการโพสเมื่อแยกตามเพศก็เห็นความต่างที่ชัดเจน คือผู้ชายจะขยันมาโพสตอนเที่ยง ส่วนผู้หญิงจะมาช่วงบ่ายเย็น เรียกได้ว่าแต่ละเพศก็มีพฤติกรรมการโพสที่แตกต่างกันไปครับ

ทีนี้เมื่อดูภาพรวมทั้งหมดของการโพสถึงร้าน Krystal Club ที่ทองหล่อแล้ว เราจะมาสู่ขั้นตอนสุดท้ายกันนั่นก็คือการวิเคราะห์จาก Social Sentiments Analysis ที่อุตส่าห์ตรากตำทำมา บอกได้เลยว่าการวิเคราะห์ข้อมูลแบบนี้จะทำให้เราได้เข้าใจบริบทอย่างแท้จริงว่า จริงๆ แล้วนอกจากเรื่องของเทรนด์ ปริมาณการถูกพูดถึงมากหรือน้อย การถูกพูดถึงแบบ Positive หรือ Negative หรือการพูดถึงตามช่วงเวลา จริงๆ แล้วคนพูดถึงในเรื่องนี้ด้วยแง่มุมแบบไหนบ้างจริงๆ กันแน่ครับ

7. Social Sentiments Analysis วิเคราะห์ข้อมูลให้ครบทุกแง่มุมโดยเข้าใจบริบทของ Data ให้รอบด้าน

ต้องบอกว่าในพาร์ทนี้แม้ Mandala Analytics จะยังไม่สามารถทำจบในตัวเองได้ แต่เราก็สามารถ Export Data ออกมาทำต่อเองได้ผ่านการทำ Data Visualization ที่จะทำให้เราได้เข้าใจบริบทที่เกิดขึ้นซึ่งจะนำไปสู่การเข้าถึง Social Consumer Insight ครับ

วิเคราะห์เจาะลึก Krystal Club ผับดังที่ทองหล่อ ด้วยการทำ Social Sentiments Analysis จาก Social listening tool ของ Mandala Analytics

จากทั้งหมด 1,219 โพสที่พูดถึงเกี่ยวกับกรณีของ Krystal Pub ทองหล่อ ที่สามารถเข้าถึงได้ผ่าน Social listening tool เมื่อนำมาวิเคราะห์สร้างเป็น Social Setiments จะเห็นว่ามีทั้งหมด 16 Sentiments ตาม Context ของ Data ที่มาจากการทำ Conversation Analysis ว่าในเรื่องนี้มีการพูดถึงในแง่มุมใดบ้างดังนี้

16 Social Sentiments ที่เกิดขึ้นในประเด็น Krystal Club

  1. รับสมัครพนักงาน PR สาวสวย
  2. เจ้าหน้าที่หน่วยงานรัฐทั้งหมด
  3. คำตัดสินของศาล
  4. ชูวิทย์
  5. เปิดรายได้ของร้านและพนักงาน
  6. น้องฟ้าใส
  7. ภาพและคลิปวิดีโอบรรยากาศภายในร้าน (Avenger เยอะมาก)
  8. อื่นๆ จะเป็นพวกแซวเพื่อนบ้างอะไรบ้าง
  9. ทูตญี่ปุ่น ที่ออกมาสารภาพ
  10. วัคซีน ในทำนองบ่นว่าฉีดให้กลุ่มเสี่ยงทองหล่อก่อนแทนประชาชนเช่นตนได้อย่างไร
  11. ใกล้ตัว เช่น ร้านอยู่ใกล้บ้านมาก ใกล้ออฟฟิศมาก
  12. ปิดบริการ ทางร้านโพสปิดบริการช่วยการระบาดระลอกใหม่เมื่อปลายปีก่อน
  13. คำถาม ว่าตกลงที่นี่คืออะไร เป็นร้านเหล้า หรืออาบอบนวด หรืออย่างไร สำหรับคนที่ไม่เข้าใจว่าเลาจน์คืออะไร
  14. ศิลปิน เป็นโพสจากศิลปินบางคนที่ไปร้องเพลงที่นี่
  15. ไฮโซ เปิดไทม์ไลน์ไฮโซสาวที่ไปร้านหรูทั่วกรุง
  16. ขายของ มีโพสนึงที่เนียนมาโพสขายผ้าซิ่นผ้าถุง แทนที่จะนุ่งสั้นๆ โป๊ๆ แบบสาวๆ ในร้าน

แล้วเมื่อดูจาก Bar Chart ล่างขวาก็จะเป็นการทำ Data Visualization เพื่อแสดงผลให้เห็นสัดส่วนของช่องทางที่พูดถึง Sentiments นี้ในโซเชียลมีเดียแต่ละช่องทาง ถ้าดูจะเห็นว่าการพูดถึงในเรื่องหน่วยงานราชการ เช่น เจ้าหน้าที่ๆ ไปติดโควิดเพราะไปเที่ยว หรือการปล่อยปะละเลยของเจ้าหน้าที่ นั้นมีสัดส่วนบน Twitter ที่สูงกว่าในประเด็นอื่นๆ รวมไปถึงในประเด็นเรื่องบรรยากาศในร้าน ที่แชร์กันจาก Twitter เยอะมากในช่วงแรก เนื่องด้วยเพราะความ Anonymous ของช่องทางนี้ที่ทำให้คนกล้าเปิดเผยอะไรมากมายโดยไม่ต้องกลัวว่าคนอื่นจะรู้ว่าตนเองเป็นใครผ่านแอคหลุม

ในส่วนของหัวข้อเรื่องการรับสมัครงานพริตตี้สาวไปให้บริการในร้าน Krystal Club แห่งนี้ก็จะกระจุกตัวอยู่ในเพจต่างๆ ทั้งเพจของร้านและเพจหางานกลางคืนโดยแทบไม่ไปในช่องทางโซเชียลมีเดียอื่นเลย ทั้งที่กลุ่มเป้าหมายน่าจะอยู่บน Twitter และ Instagram เสียเป็นส่วนใหญ่ จากสถิติของ We Are Social ปีล่าสุดที่บอกให้รู้ว่าผู้หญิงไทยชอบใช้ Instagram มากกว่า และคนรุ่นใหม่ก็ชอบใช้ Twitter มากขึ้นครับ (ไม่ได้ชี้โพรงให้กระรอก แต่กำลังสอน Digital Marketing Strategy 101)

สรุปคนไทยบนออนไลน์พูดถึงเรื่อง Krystal Club หรูที่ทองหล่อว่าอย่างไร

จะเห็นชัดเจนว่าประเภทของ Conversation ที่เกิดขึ้นเยอะที่สุดกลับเป็นโพสของทางร้านเองที่โพสหาพนักงานใหม่ตลอดเวลา ดังนั้นทางเจ้าหน้าที่หน่วยงานภาครัฐน่าจะหัดใช้​ Social listening tool เพื่อตามดูว่าร้านไหนหรือเลาจน์ใดกำลังมาแรงด้วยการเฝ้าดูคีย์เวิร์ดคำว่า งานกลางคืน เป็นหลักได้สบายๆ เลยครับ

และนี่ก็เป็นส่วนหนึ่งของการทำ​ Social Consumer Research จาก Data ผ่านเครื่องมืออย่าง Social Listening Tool ที่ผมทำให้ลูกค้าที่อยากรู้เรื่องแบรนด์ หรืออยากรู้เรื่อง Market Target และ Insight ด้วยการวิเคราะห์ลงลึกทุกแง่มุม ทั้งในด้านของ​ Quanlity และ Quantity ครับ

สุดท้ายนี้ผมมี Link ของ Social Sentiment Dashboard ให้คนที่สนใจลองเข้าไปกดเล่นดูว่าในแต่ละหัวข้อนั้นถูกพูดถึงบนแพลตฟอร์มใดบ้าง ไว้โอกาสหน้าว่างจากการทำ Research ให้ลูกค้าจะมาทำ Case Study สนุกๆ สอนการใช้ Social listening tool เพื่อทำรีเสิร์จแบบดาต้า 5.0 ครับ

แบรนด์ไหนหรือหน่วยงานใดอยากให้ผมทำ Research แบบนี้ให้ ติดต่อผ่านอีเมลได้ครับ email: nattapon@everydaymarketing.co

วิเคราะห์เจาะลึก Krystal Club ผับดังที่ทองหล่อ ด้วยการทำ Social Sentiments Analysis จาก Social listening tool ของ Mandala Analytics

Krystal Sentiments Dashboard > http://bit.ly/KrystalSentimentDashboard

อ่านบทความการใช้ Social listening tool ในการตลาดวันละตอนต่อ > https://www.everydaymarketing.co/tag/social-listening-tools/

สนใจอยากทดลองใช้ Mandala Analytics เครื่องมือ Social listening tool ของคนไทยตามลิงก์ไปได้เลยครับ > https://bit.ly/MandalaAnalytics

Nattapon Muangtum

Nattapon Muangtum

เจ้าของเพจการตลาดวันละตอน / อาจารย์พิเศษวิชา Data-Driven Communication / ผู้เขียนหนังสือการตลาดแบบรู้ใจ Personalized Marketing, การตลาดแบบฉลาดใช้ดาต้า Data-Driven Marketing และ Data Thinking / เป็นที่ปรึกษาด้าน Marketing และ Data-Driven ให้กับบริษัทบางแห่งและหน่วยงานบางที่

ใส่ความเห็น

อีเมลของคุณจะไม่แสดงให้คนอื่นเห็น ช่องข้อมูลจำเป็นถูกทำเครื่องหมาย *